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Computer-Aided Tuning of Microwave Filters
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Abstract—This paper introduces an algorithm based on fuzzy
logic for tuning microwave filters. The approach is demonstrated
by considering two filters: a four-pole Chebyshev filter and an
eight-pole elliptic filter. Each filter is then detuned to perform two
examples: one is slightly detuned and the other is highly detuned.
In both cases, the approach has proven to be very efficient in
identifying the filter elements that cause the detuning. The fuzzy
rules are extracted from sampled data. The expert rules could also
be added. The algorithm can be applied to any microwave circuit
tuning problem.

Index Terms—Circuit tuning, computer-aided design (CAD),
computer-aided tuning, fuzzy logic (FL), fuzzy-logic systems
(FLS), microwave circuits, microwave filters.

I. INTRODUCTION

COMPUTER-AIDED diagnosis and tuning is very essential
in the fabrication of complex microwave filters. Tuning is

almost necessary for any manufactured microwave circuit due
to lack of highly accurate design models, manufacturing toler-
ances, and design uncertainties. Computer-aided tuning helps to
speed up the tuning process and can be incorporated to improve
the design model.

For most real-world control/tuning problems, the informa-
tion regarding design, evaluation, realization, etc., can be classi-
fied into two types: numerical information obtained from math-
ematical models or measurements, and linguistic information
obtained from human experts. Most current intelligent control
approaches combine the standard processing methods using the
numerical data with expert systems. Fuzzy logic theory allows
us to incorporate the expert information into the control/tuning
problem.

Fuzzy set theory (FST) was first introduced by Zadeh [1]. In
classical logic, sets are defined in a crisp manner, i.e., an el-
ement either belongs to a set or does not belong to it. In fuzzy
logic (FL), a membership value between “0” and “1” is assigned
to each element of the set. “0” means the element does not be-
long to the set at all, whereas “1” means the element totally
belongs to that set. Fuzzy logic interprets the numerical data
as linguistic rules. The extracted rules will then be used as a
kind of system specification to calculate the output values of
the system. The procedure of creating fuzzy sets from numer-
ical data is called “fuzzification,” and the process of calculating
the output values from the output fuzzy sets based on some lin-
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Fig. 1. Generalized model for coupled resonator filters.

guistic rules is called “defuzzification.” More details about these
procedures are described in [1] and [8].

Over the past two years, several papers [2]–[6] have been
published on computer-aided tuning of microwave filters em-
ploying different techniques. These techniques can be basically
divided into two main categories: time- and frequency-domain
techniques. Filter tuning using the time-domain technique is de-
scribed in [2]–[4], while different theoretical and computational
frequency-domain techniques were proposed in [5] and [6].

All the above techniques are based on implementing a mathe-
matical model that is capable of interpreting the measured data.
The FL approach also allows a mathematical model to be used
in generating the fuzzy rules, which, in turn, are used to inter-
pret the measured data. The approach, however, has the addi-
tional flexibility of allowing the integration of the mathematical
model with information obtained from human experts. In addi-
tion, the FL approach is very efficient computationally since it
requires only a few measured data points to identify the filter
elements that cause the detuning. In particular, the approach is
useful in cases where the filter is highly detuned.

II. FILTER TUNING PROBLEM

Consider the generalized filter network shown in Fig. 1. The
filter performance can be described by a coupling matrix
whose elements are identified in Fig. 1. The generalized matrix
is shown in (1). To minimize the tuning effort, accurate deter-
mination of individual resonant frequencies and coupling coeffi-
cients is essential. Tuning the filter by adjusting each parameter
individually, as proposed in [4] and [5], may not lead to a con-
vergent solution in some filters, particularly in structures where
the resonant frequency of the resonator is strongly dependent
on the coupling values to the adjacent resonators. The FL ap-
proach deals with the adjustment of all filter parameters taking
into consideration the dependency of the parameters on each
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other as follows:

(1)

The typical structure shown in Fig. 1 consists ofcoupled
lossless resonators. denotes the frequency-indepen-
dent coupling between resonatorand . Following the analysis
in [12], we can get the scattering parameters in terms of the cou-
pling elements

(2)

(3)

where

(4)

(5)

where is the unity matrix and is a matrix with all elements
zero, except and .

The importance of the coupling elements in filter tuning is
that the coupling elements are directly related to the position of
adjustable screws. Once one of these elements deviate from the
desired value, we can easily turn it back to the desired value by
turning the corresponding screw.

In case of a detuned filter, we have access to the-parameters
of the detuned filter. The extraction of the coupling elements
with the knowledge of scattering parameters will help us find
the corresponding screws to be adjusted for tuning.

In the following sections, we will show how by using this
mathematical model, we can extract the coupling elements using
the FL approach.

III. FLSS

The first paper on FL was written by Zadeh [1], who is con-
sidered to be the founding father of the entire field of FL. He
introduces FST as a formal way to represent uncertainty math-
ematically.

Recall that a crisp set in a universe of discourse can
be defined as meets some condition. This tells
us that if meets the specific condition, then it belongs to set

; otherwise it does not belong to set. Alternatively, we can
introduce a “0”–“1” membership function to describe the
membership of to . If , then ; and if ,
then .

A fuzzy set in a universe of discourse is characterized
by a membership function , which can take values in the
interval . A fuzzy set is a generalization of a crisp set whose
membership function can only accept 0 or 1. A membership
function in this case measures the degree of similarity of an
element in to a fuzzy subset.

A fuzzy set in can be represented as
. When is continuous, is usually written as

. In this equation, the integral sign does not mean
integration; it denotes a collection of all pointsassociated with
their related membership functions . When is discrete,

Fig. 2. Block diagram of an FLS.

is written as . In this equation, the summa-
tion sign does not mean summation; it denotes the collection of
all points associated with their membership functions .

An FLS, in general, is a nonlinear mapping of an input data
vector into a scalar output. Fig. 2 depicts the block diagram of
such a system. If we have a vector output, we can decompose
it into a collection of independent multiinput/single-output sys-
tems. An FLS can also be described as a function approximator.

Here, we briefly describe different blocks in an FLS. The
fuzzifiermaps the crisp input numbers into fuzzy sets. Therules
are in the form ofIF–THEN rules that relate input fuzzy sets to
output fuzzy sets at different conditions and are also calledfuzzy
associative memory. Theinference systemmaps the input fuzzy
sets into output fuzzy sets. This block combines the rules in
a specific way to obtain the output fuzzy sets. Thedefuzzifier
maps fuzzy output sets into crisp output numbers. This step is
necessary since we need to obtain crisp numbers in most engi-
neering applications.

It can be shown that an FLS can be represented as a fuzzy
basis function (FBF) expansion in the following form [11]:

(6)

where is called an FBF, is the number of rules, and is
the coefficient corresponding to each rule. It has been proven for
many types of FLSs that they can be treated asuniversal function
approximators. Therefore, an FLS can approximate any real con-
tinuous nonlinear function to arbitrary degree of accuracy [11].

IV. GENERATING FUZZY RULES FROM NUMERICAL DATA

Many approaches were proposed for generating fuzzy rules
from numerical data (i.e., Takagi and Sugeno in 1985 [7], Wang
and Mendel in 1992 [8], Sugeno and Yasukawa in 1993 [9], and
Leondes in 1999 [10]).

In this paper, the fuzzy rules are generated using the method
proposed by Wang and Mendel since it allows to combine
both numerical and linguistic information into a common
framework—a fuzzy-rule base [8]. We consider the-matrix
coupling coefficients as outputs, whereas the-parameters
of the filter at different frequencies considered as inputs.
Suppose we have frequency sampling points, i.e., inputs
and unknown coupling coefficients as outputs. We can either
extract the input information from or . The inputs then
will be in the form , which can be written
in the form for simplicity. The outputs, which
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are the coupling coefficients, could also be written in the form
for simplicity. We can now alter each coupling

coefficient around the ideal design depending on the degree of
mistuning and generate a number of input–output data pairs

(7)

For each input and output, we should define membership
functions. Using the membership functions, for each data pair,
we obtain a rule in the format

IF is and is

and is THEN

is and is (8)

where is a fuzzy set among the fuzzy sets of each input/output
variable.

Basically, we get rules corresponding todata pairs. How-
ever, in practice it is highly probable that there will be some
conflicting rules, i.e., rules that have the sameIF part, but a dif-
ferentTHEN part. To resolve the conflict, we choose among the
conflicting rules the rule with maximum degree based on the
membership values of input–output data pairs [8]. In this way,
not only the conflict problem is resolved, but also the number
of rules is greatly reduced.

In order to find the rules, there is another step, which is to
assign membership functions to any of the input–output vari-
ables. The input membership functions are selected considering
the difference between the ideal and experimental input values
to get proper domain intervals for each input. “Domain interval”
of a variable identifies the range that the variable could pos-
sibly take. Note that the variables are also allowed to lie out-
side their domain intervals. If a data pair fits in all of the input
intervals corresponding to inputs, then that data pair will take
effect in output calculation. In other words, the corresponding
rule to the data pair will be fired. The output domain intervals
are also selected based on the same approach. The firing rules
correspond to different data pairs that resemble the experimental
performance of the circuit, i.e., in this case,-parameters. The
defuzzification part of the FLS will combine the fired rules in-
formation to calculate the output of the system.

V. SETTING UP THETUNING PROBLEMS

To illustrate the proposed FL approach in this paper, we first
consider the tuning of a four-pole bandpass Chebyshev filter.
The coupling matrix ( -matrix) is a symmetrical 4 4 matrix
with all elements zero, except , , and .

Fig. 3 depicts versus the frequency of two detuned filters:
one with a slight deviation and the other with a high deviation
from the ideal filter performance.

As a more complicated example, we consider an eight-pole
bandpass elliptic filter, which also has coupling between non-
adjacent resonators. The coupling matrix for this example is a
symmetrical 8 8 matrix with all elements 0, except the ones

Fig. 3. Two examples of slightly detuned and highly detuned four-pole
Chebyshev filter characteristics.

Fig. 4. Ideal eight-pole elliptic-filter characteristic.

shown in (9). Fig. 4 shows and of the ideal design filter
with the center frequency of 12 GHz as follows:

(9)
We also assume that the filter is symmetrical, thus,

(10)

As a result, the nonzero variables in the-matrix are ,
, , , , and . Fig. 5 depicts the frequency

response of the eight-pole filter in two cases of slightly detuned
and highly detuned.

These two examples represent the experimental data of two
detuned filters each with two different deviations. In order to use
the tuning procedure, we need to extract the-matrix elements
associated with the experimental results. With the knowledge of
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Fig. 5. Two examples of slightly detuned and highly detuned eight-pole
elliptic-filter characteristics.

Fig. 6. General shape of input membership functions for four-pole Chebyshev
filter example.

the ideal coupling matrix, one can then identify the elements that
caused the detuning.

VI. A SSIGNING THEMEMBERSHIPFUNCTIONS AND

DEFUZZIFICATION PROCESS

In assigning the membership functions or fuzzy sets, we use
4–5 input fuzzy sets, five output fuzzy sets, and triangular mem-
bership functions.

For the four-pole filter example, we choose five fuzzy sets
for each input with the third fuzzy set centered on the measured
value of the input. The membership functions are in the shape
depicted in Fig. 6.

In Fig. 6, is the measured value of at a specific fre-
quency. The domain interval is selected considering the
difference between the measured and ideal. The value is
usually a small fraction of the domain interval to let the mea-
sured input value belong to the three middle fuzzy sets at the
same time. The valuesand are chosen around the middle of

and , respectively.
The output membership functions are symmetrical triangular

functions with centers at coupling element values by which the
data pairs are generated. As an example, Fig. 7 depicts the output
membership function of the coupling element, i.e., .

For the eight-pole filter example, we choose four fuzzy sets
for each input with the measured value of the input at the middle
of two centers of adjacent fuzzy sets, as shown in Fig. 8.

In Fig. 8, is the measured value of at a specific fre-
quency. The domain interval is also selected considering

Fig. 7. Output membership functions fory corresponding to the four-pole
Chebyshev filter.

Fig. 8. General shape of input membership functions for eight-pole
elliptic-filter example.

Fig. 9. Output membership functions fory corresponding to the eight-pole
elliptic filter.

the difference between the measured and ideal. The value
is usually a small fraction of the domain interval to let the

measured input value belong to the two middle fuzzy sets at the
same time.

The output membership functions in this example are also
chosen as symmetrical triangular functions each centered at the
coupling element sampling points. As an example, Fig. 9 shows
the output membership functions of the coupling element,
i.e., .

Note that, in general, the choice of membership functions, as
well as their location and spreads, is a related problem and can
be adaptively implemented in our algorithm. This issue has been
referred to astuning the parameters of an FLS using training
data, and is addressed in [13]–[15].

In our FLS, we use Singleton fuzzification, sum–product
composition, and product inference [11]. To calculate any of
the outputs, we use the centroid defuzzification formula

(11)

(12)
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where denotes the center value of the fuzzy set corresponding
to rule and output . The values are the input values at
which the output is desired. The term is the member-
ship value of to the fuzzy set corresponding to the rule
and input . is the number of rules. Note that as long as
the output membership functions are symmetrical, the shapes of
the individual membership functions are arbitrary such as trian-
gular, trapezoidal, and Gaussian functions, andis simply the
center of each membership function. If we chose a nonsymmet-
rical membership, then we would need to calculate the center of
gravity of each membership function as. By choosing sym-
metrical membership functions, we need less computation.

VII. T UNING RESULTS FOR THESLIGHTLY DETUNED

FOUR-POLE CHEBYSHEV FILTER

The ideal coupling matrix of the filter is given in (13), while
the coupling matrix of the slightly detuned filter (example 1)
is given in (14). The performance associated with this coupling
matrix represents the experimental performance of a slightly de-
tuned filter.

By defining all membership functions for inputs and outputs,
extracting the rules from the generated data, and using the de-
fuzzification formula, one can easily extract the coupling matrix
of the slightly detuned filter. The FL approach required 70 rules
and only nine frequency sampling points, i.e., nine inputs to per-
form the extraction.

The extracted coupling matrix is given in (15), while Fig. 10
shows the extracted performance calculated using (2)–(5) and
(15). The extracted coupling matrix provides a response that is
fairly close to the experimental filter response

(13)

(14)

(15)

For this example, the inputs are selected to be the magnitude
of at different frequencies with seven frequencies inside the
passband and the other two outside the passband.

VIII. T UNING RESULTS FOR THEHIGHLY DETUNED

FOUR-POLE CHEBYSHEV FILTER

The coupling matrix of the highly detuned filter (example 2)
is given in (16). We also used only nine frequency points and 70
rules for this example. Equation (17) gives the extracted cou-
pling matrix, while Fig. 11 illustrates a comparison between the
FL extracted performance and the experimental performance for
both and . A very good match between the two filter
characteristics is achieved.

Fig. 10. Comparison between experimental and extracted performance using
FL for the slightly detuned filter.

By comparing the ideal matrix given in (13) and the extracted
matrix given in (17), one can easily identify the coupling coef-
ficients that caused the detuning.

For this example, we used the same frequency sampling
points as the slightly detuned example. We also usedas
inputs as follows:

(16)

(17)

IX. TUNING RESULTS FOR THESLIGHTLY DETUNED

EIGHT-POLE ELLIPTIC FILTER

The ideal coupling matrix of the filter is given in Table I,
while the coupling matrix of the slightly detuned filter
(example 1) is given in Table II. The performance associated
with this coupling matrix represents the experimental perfor-
mance of a slightly detuned filter.

By defining all membership functions for inputs and outputs,
extracting the rules from the generated data, and using the de-
fuzzification formula, we can easily extract the coupling matrix
of the slightly detuned filter. For each of the six unknowns i.e.,
coupling elements in (9), we chose five sampling points within
the range of 10% of the ideal coupling elements. We assume
that the coupling elements to be extracted are within this range.
Therefore, the number of data pairs in this case is 5 .
These data pairs are generated very fast using the center values
of the fuzzy sets associated with the coupling elements incor-
porated into (2)–(5). We need to generate these data pairs only
once. We first consider nine frequency points, i.e., nine inputs.
To obtain a better selectivity in the case of a slightly detuned
filter, we choose the magnitude of at frequency points in
the passband as inputs. After omitting the contradicting rules,
the number of rules reduces to 1016 rules. For the inputs we
have chosen, 24 of these rules are fired to extract the outputs.
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(a)

(b)

Fig. 11. Comparison between experimental and extracted performance using
FL for the highly detuned filter. (a)S . (b)S .

TABLE I
M OF THE EIGHT-POLE ELLIPTIC-FILTER EXAMPLE

The extracted coupling matrix is given in Table III, while
Fig. 12 shows the extracted performance calculated using the
coupling matrix given in Table III and (2)–(5). The extracted
coupling matrix provides a close response to the experimental
filter response of , as shown in Fig. 12(a), but not as much
close response to the experimental response of, as shown in
Fig. 12(b).

To perform a better response, we increase the number of fre-
quency points to 17. Increasing the number of frequency points

TABLE II
M OF THE EIGHT-POLE ELLIPTIC-FILTER EXAMPLE

(SLIGHTLY DETUNED)

TABLE III
M OF THE EIGHT-POLE FILTER EXAMPLE

(SLIGHTLY DETUNED, NINE INPUTS)

(inputs) can benefit us in the following two ways.

• The possibility of rule contradiction will decrease and,
thus, we get more rules out of the basic rules extracted
from the data pairs. More rules could give us a more accu-
rate system. Note that by increasing the number of inputs,
the number of rules cannot exceed the number of sampling
points.

• For a rule to be fired, we need all the conditions of (8) at
the antecedent to be satisfied. Therefore, more inputs lead
to more conditions to be satisfied. This, in turn, reduces
the probability for a rule to be fired. In other words, the
rules will be more selective.

For this case, after omitting the contradicting rules, we get
2235 rules, which is about two times more than the number of
rules for nine inputs. For the same input, in this case, 49 rules
are fired to calculate the outputs. The extracted coupling matrix
for 17 inputs is given in Table IV, while Fig. 13 shows the ex-
tracted performance calculated using the coupling matrix given
in Table IV and (2)–(5). The extracted coupling matrix provides
very close responses to the experimental responses ofand

, as shown in Fig. 13(a) and (b), respectively. A comparison
between Figs. 12 and 13 demonstrates the effect of increasing
the number of inputs, as it shows a better match for both
and characteristics.

X. TUNING RESULTS FOR THEHIGHLY DETUNED

EIGHT-POLE ELLIPTIC FILTER

The coupling matrix of the highly detuned filter (example 2)
is given in Table V. We used 17 frequency points as well. The
number of rules after resolving the contradictions becomes
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(a)

(b)

Fig. 12. Comparison between experimental and extracted performance of the
eight-pole filter using FL with nine inputs for the slightly detuned filter. (a)S .
(b) S .

TABLE IV
M OF THE EIGHT-POLE ELLIPTIC-FILTER EXAMPLE

(SLIGHTLY DETUNED, 17 INPUTS)

3066. For the inputs we have chosen, ten of these rules are fired
to extract the outputs. Table VI gives the extracted coupling
matrix, while Fig. 14 illustrates a comparison between the FL
extracted performance and the experimental performance for

. A very good match between the two filter characteristics
is achieved. Comparing the number of firing rules in the case
of the highly detuned filter with the case of the slightly detuned
filter, we can observe that, although we have more rules in this
example, the number of firing rules are less. The reason for

(a)

(b)

Fig. 13. Comparison between experimental and extracted performance of the
eight-pole filter using FL with 17 inputs for the slightly detuned filter. (a)S .
(b) S .

TABLE V
M OF THE EIGHT-POLE ELLIPTIC-FILTER EXAMPLE

(HIGHLY DETUNED)

this is that, in the case of the highly detuned filter, we need
bigger domain intervals for inputs and outputs, while keeping
the number of membership functions the same. This will
result to having less data pairs that resemble the experimental
performance of the filter or less firing rules.

By comparing the ideal matrix given in Table I and the ex-
tracted matrix given in Table VI, one can easily identify the cou-
pling coefficients that caused the detuning.
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TABLE VI
M OF THE EIGHT-POLE ELLIPTIC-FILTER EXAMPLE

(HIGHLY DETUNED)

Fig. 14. Comparison between experimental and extracted performance of the
eight-pole filter using FL with 17 inputs for the highly detuned filter.

XI. CONCLUSION

This paper has introduced FL tuning to the microwave com-
munity for the first time. The approach has been successfully ap-
plied to tune four-pole Chebyshev and eight-pole elliptic filters
for two different cases of slightly detuned and highly detuned. In
both cases, a very small number of measured frequency points
were required to identify the coupling coefficients that caused
the detuning. An FLS can be considered as a universal func-
tion approximator, with the extra capability of incorporating the
human expert information, which makes it unique among other
methods. Adding human experience to our model is one of our
future objectives that is underway. Since all the tuning proce-
dures for microwave problems need parameter extraction, FL
can be applied to extract these parameters and, thus, can be
easily applied to any microwave circuit tuning problem.
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