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Computer-Aided Tuning of Microwave Filters
Using Fuzzy Logic

Vahid Miraftah Student Member, IEEBNd Raafat R. MansouFellow, IEEE

Abstract—This paper introduces an algorithm based on fuzzy My, {Mli Mi,n-i My in
logic for tuning microwave filters. The approach is demonstrated R1L /
by considering two filters: a four-pole Chebyshev filter and an ,_[? g\—{ 4 )‘4 4 ¢ g—x‘{
eight-pole elliptic filter. Each filter is then detuned to performtwo e 1 3 ¢ 2 5“" g i =g oml n R2
examples: one is slightly detuned and the other is highly detuned. - 5
In both cases, the approach has proven to be very efficient in '\ ut f " f f
identifying the filter elements that cause the detuning. The fuzzy M, / M
rules are extracted from sampled data. The expert rules could also \
be added. The algorithm can be applied to any microwave circuit M,

tuning problem.

Index Terms—Circuit tuning, computer-aided design (CAD), Fig. 1. Generalized model for coupled resonator filters.
computer-aided tuning, fuzzy logic (FL), fuzzy-logic systems
(FLS), microwave circuits, microwave filters.
guistic rules is called “defuzzification.” More details about these

procedures are described in [1] and [8].

Over the past two years, several papers [2]-[6] have been
OMPUTER-AIDED diagnosis and tuning is very essentigiublished on computer-aided tuning of microwave filters em-
in the fabrication of complex microwave filters. Tuning igploying different techniques. These techniques can be basically

almost necessary for any manufactured microwave circuit ddiwided into two main categories: time- and frequency-domain
to lack of highly accurate design models, manufacturing tolelechniques. Filter tuning using the time-domain technique is de-
ances, and design uncertainties. Computer-aided tuning helpsatbed in [2]-[4], while different theoretical and computational
speed up the tuning process and can be incorporated to imprtsegluency-domain techniques were proposed in [5] and [6].
the design model. All the above techniques are based on implementing a mathe-
For most real-world control/tuning problems, the informamatical model that is capable of interpreting the measured data.
tion regarding design, evaluation, realization, etc., can be clasBie FL approach also allows a mathematical model to be used
fied into two types: numerical information obtained from mathin generating the fuzzy rules, which, in turn, are used to inter-
ematical models or measurements, and linguistic informatignet the measured data. The approach, however, has the addi-
obtained from human experts. Most current intelligent contréibnal flexibility of allowing the integration of the mathematical
approaches combine the standard processing methods usingrthdel with information obtained from human experts. In addi-
numerical data with expert systems. Fuzzy logic theory allowion, the FL approach is very efficient computationally since it
us to incorporate the expert information into the control/tuningquires only a few measured data points to identify the filter
problem. elements that cause the detuning. In particular, the approach is

Fuzzy set theory (FST) was first introduced by Zadeh [1]. laseful in cases where the filter is highly detuned.

classical logic, sets are defined in a crisp manner, i.e., an el-
ement either belongs to a set or does not belong to it. In fuzzy
logic (FL), a membership value between “0” and “1" is assigned

to each element of the set. “0” means the element does not be-

long to the set at all, whereas “1” means the element totally Consider the generalized filter network shown in Fig. 1. The
belongs to that set. Fuzzy logic interprets the numerical dgiger performance can be described by a coupling malvix
as linguistic rules. The extracted rules will then be used aspose elements are identified in Fig. 1. The generalized matrix
kind of system specification to calculate the output values g shown in (1). To minimize the tuning effort, accurate deter-
the system. The procedure of creating fuzzy sets from numeimation of individual resonant frequencies and coupling coeffi-
ical data is called “fuzzification,” and the process of calculatingjents is essential. Tuning the filter by adjusting each parameter
the output values from the output fuzzy sets based on some hﬁU|V|dua||y’ as proposed in [4] and [5], may not lead to a con-
vergent solution in some filters, particularly in structures where
the resonant frequency of the resonator is strongly dependent

. INTRODUCTION

Il. FILTER TUNING PROBLEM
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other as follows:
mi1 mi2 . . . Min OLES
m21 M2z . . . M2 | (Numerical data
. . Crisp or Expert rules) Crisp
M = . (]_) Inputs Outputs
' ' —-)| FUZZIFIER I ¢ l DEFUZZIFIER I——)
Mnl Mng - - - Mo b FUZZY T y=f(x)
The typical structure shown in Fig. 1 consistsrotoupled m;];:sRETgnfE
lossless resonatora/;; = M;; denotes the frequency-indepen- F””g’ei:m“ F"”sye g”tp“‘
dent coupling between resonai@nd;. Following the analysis o

in [12], we can get the scattering parameters in terms of the CY 2. Block diagram of an FLS
pling elements

So1 == 2jV RiR [ATT] | (2)  Fiswrittenask = 3", ur(x)/x. Inthis equation, the summa-
Si1=1+2jR[A7] u (3) tion sign does not mean summation; it denotes the collection of

all pointsz associated with their membership functigns(z).

B . An FLS, in general, is a nonlinear mapping of an input data
A=A - jR+M ) vector into a scalar output. Fig. 2 depicts the block diagram of
_ Jo < f fo) ) such a system. If we have a vector output, we can decompose

where

BW\ fo f it into a collection of independent multinput/single-output sys-
whereI is the unity matrix and® is a matrix with all elements tems. An FLS can also be described as a function approximator.
Here, we briefly describe different blocks in an FLS. The

zero, excepf?y; = Ry andR,,,, = Rs. = i )
The importance of the coupling elements in filter tuning i&/zZifiermaps the crisp input numbers into fuzzy sets. files

that the coupling elements are directly related to the positiondf€ In the form ofF—THEN rules that relate input fuzzy sets to
adjustable screws. Once one of these elements deviate fromQHEPUt fuzzy sets at different conditions and are also céllezy
desired value, we can easily turn it back to the desired value B§S0ciative memoryrheinference systemaps the input fuzzy
turning the corresponding screw. séts mfu_) output fuzzy. sets. This block combines the rgles in
In case of a detuned filter, we have access tctarameters & SPECfic way to obtain the output fuzzy sets. Treuzzifier
of the detuned filter. The extraction of the coupling elemenfB8@PS fuzzy output sets into crisp output numbers. This step is

with the knowledge of scattering parameters will help us fingecessary since we need to obtain crisp numbers in most engi-

the corresponding screws to be adjusted for tuning. neering applications.
In the following sections, we will show how by using this It can be shown that an FLS can be represented as a fuzzy

mathematical model, we can extract the coupling elements usRfp'S function (FBF) expansion in the following form [11]:
the FL approach. M
y=Ffx) =Y y'¢ax) (6)
=1

ll. FLSs
The first paper on FL was written by Zadeh [1], who is conwhereqﬁl(x) 's called an FBFI is the number of rules, argd is

sidered to be the founding father of the entire field of FL. H}ehe coefficient corresponding to each rule. It has been proven for

introduces FST as a formal way to represent uncertainty mamgnytypes of FLSs that they can be treatevdra_lsersal function
ematically. approximatorsTherefore, an FLS can approximate any real con-

Recall that a crisp sefl in a universe of discourse can tinuous nonlinear function to arbitrary degree of accuracy [11].

be defined asA = {z | « meets some conditign This tells

us that ifz meets the specific condition, then it belongs to set
A; otherwise it does not belong to sét Alternatively, we can  Many approaches were proposed for generating fuzzy rules
introduce a “0"-"1" membership functiom4 (x) to describe the from numerical data (i.e., Takagi and Sugeno in 1985 [7], Wang
membership of to A. If z € A, thenus(z) = 1;andifz ¢ A, and Mendelin 1992 [8], Sugeno and Yasukawa in 1993 [9], and
thenpa(z) = 0. Leondes in 1999 [10]).

A fuzzy setF in a universe of discoursg is characterized In this paper, the fuzzy rules are generated using the method
by a membership functionr(x), which can take values in theproposed by Wang and Mendel since it allows to combine
interval|0, 1]. A fuzzy setis a generalization of a crisp set whosleoth numerical and linguistic information into a common
membership function can only accept 0 or 1. A membershiamework—a fuzzy-rule base [8]. We consider thEmatrix
function in this case measures the degree of similarity of aoupling coefficients as outputs, whereas thigparameters
element inU to a fuzzy subset. of the filter at different frequencies considered as inputs.

A fuzzy setF in U can be represented &5= {(z, ur(z)) | Suppose we have frequency sampling points, i.ep, inputs
x € U}. WhenU is continuousF is usually written ag" = andgq unknown coupling coefficients as outputs. We can either
fU pr(z)/z. In this equation, the integral sign does not meagxtract the input information froms; or Sy;. The inputs then
integration; it denotes a collection of all pointsissociated with will be in the form S(f1),...,S(fp), which can be written
their related membership functiops (x). Whenz is discrete, in the formazy,zo, ..., x, for simplicity. The outputs, which

IV. GENERATING FUzzYy RULES FROM NUMERICAL DATA

’ ’
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are the coupling coefficients, could also be written in the form
Y1,Y2,- .., Yq for simplicity. We can now alter each coupling
coefficient around the ideal design depending on the degree o
mistuning and generate a number of input—output data pairs

($§1)7$g1)7 e 7w1(71);y§1)7y§1)7 s 7y;1))

21 (dB)

(9352)7 O TTTT LTT S SO 7115,2))
(xgn)7 :L‘gn)7 R 7:E§)n); y](_n)7 yén)7 A y((In)) . (7) \

For each input and output, we should define membership
functions. Using the membership functions, for each data pair,
we obtain a rule in the format

IF (:El is fSI1> and(a:2 is fsxz) .
and(z, is fszp), THEN
(y1is fsy1) ... and(yq is fsy,)

(8)

2783

—— Example 1
- 2

---- Example

Freq (GHz)

1 112 114 116 118 12 122 124 126 128 13

Fig. 3. Two examples of slightly detuned and highly detuned four-pole
Chebyshev filter characteristics.

wheref s is afuzzy setamong the fuzzy sets of each input/output ) s, ‘

variable. -10r / ! - S,
Basically, we get rules corresponding te data pairs. How- 0. ,;" |

ever, in practice it is highly probable that there will be some / [\ /\ 4

conflicting rules, i.e., rules that have the sampart, but a dif- -30 i 4

ferentTHEN part. To resolve the conflict, we choose among the 4 / ‘( v V V |

conflicting rules the rule with maximum degree based on the S {

membership values of input—output data pairs [8]. In this way, =50

not only the conflict problem is resolved, but also the number .ol AT LT

of rules is greatly reduced. i Ny
In order to find the rules, there is another step, which is to 70 1

assign membership functions to any of the input—output vari-  -80 .

ables. The input membership functions are selected considering

the difference between the ideal and experimental input values
to get proper domain intervals for each input. “Domain interval”
of a variable identifies the range that the variable could POs-
. . . ig. 4.
sibly take. Note that the variables are also allowed to lie out-
side their domain intervals. If a data pair fits in all of the input

intervals corresponding to inputs, then that data pair will ta

1192 1194 11.96

Freq (GHz)

Ideal eight-pole elliptic-filter characteristic.

effect in output calculation. In other words, the correspondintjth the center frequency of 12 GHz as follows:

11.98 1200 1202 12.04 12i06 12.08

lglown in (9). Fig. 4 showsS;; andSs,; of the ideal design filter

rule to the data pair will be fired. The output domain intervals 0 mp O 0 0 0 0 0 7
are also selected based on the same approach. The firing rules | mi2 0 ma3 0 0 0 mer O
correspond to different data pairs that resemble the experimental 0 mo3 0 mz 0 mg O 0
performance of the circuit, i.e., in this caseparameters. The , | 0 0 mza 0 my O 0 0
defuzzification part of the FLS will combine the fired rules in- 0 0 0 msys 0 mga O 0
formation to calculate the output of the system. 0 0 mge 0 m3za 0 maz 0
0 mo7 0 0 0 ma3 0 mi192
V. SETTING UP THE TUNING PROBLEMS Lo 0 0 0 0 0 my 0 ©

To illustrate the proposed FL approach in this paper, we firstWe also assume that the filter is symmetrical, thus,

consider the tuning of a four-pole bandpass Chebyshev filter.
The coupling matrix ¥-matrix) is a symmetrical 4 4 matrix
with all elements zero, exceptis, ma3, andmsy.

Mi,j = M(nt1—i),(n+1-j)-

(10)

As a result, the nonzero variables in tNE-matrix arem,

Fig. 3 depictsS,; versus the frequency of two detuned filtersins,s, maq, mas, mag, andmsy. Fig. 5 depicts the frequency
one with a slight deviation and the other with a high deviatioresponse of the eight-pole filter in two cases of slightly detuned
from the ideal filter performance. and highly detuned.

As a more complicated example, we consider an eight-poleThese two examples represent the experimental data of two
bandpass elliptic filter, which also has coupling between nodetuned filters each with two different deviations. In order to use
adjacent resonators. The coupling matrix for this example idfge tuning procedure, we need to extractiematrix elements
symmetrical 8x 8 matrix with all elements 0, except the oneassociated with the experimental results. With the knowledge of
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—— Example 1
---- Example 2

m(y1)

1 A N
08l /\ \ // \\\ / \\ /|

06f \ / \ \ i

_ X A A
04 / \ \\ // \ N
o2r / / \ /// N\ / \]

$21(dB)

/ \/

8,5 0.75

y1

Fig. 7. Output membership functions fgr corresponding to the four-pole
Chebyshev filter.

m(x)

1

1192 1194 1196 1198 12 12.02 12.04 12106 12.08

Freq(GHz) 0.8 b
. . . . 0.6} 1

Fig. 5. Two examples of slightly detuned and highly detuned eight-pol /
elliptic-filter characteristics. 0.4} J
0.2 i

1 m(x)
0 1 1 1 1 L 1

elliptic-filter example.
0.4

/\ /\ /\ a cd Tt o b x@B)
0.8f J
06l y \ 1 Fig. 8. General shape of input membership functions for eight-pole
/
0.2+ / J m(y1)

/
0 a ¢ cd ¢ co+d f b xdB) 0.8F / .

Fig. 6. General shape of input membership functions for four-pole Chebysh 061

filter example. 04l |
, : _ L 02 \ ) \ \\ ]

the ideal coupling matrix, one can then identify the elements th \\ \

caused the detuning. 706 065 07 075 08 08 095 0% 1 i

Fig. 9. Output membership functions fgr corresponding to the eight-pole

VI. ASSIGNING THE MEMBERSHIP FUNCTIONS AND elliptic filter.

DEFUZZIFICATION PROCESS

In assigning the membership functions or fuzzy sets, we uee difference between the measured and idgal The value
4-5 input fuzzy sets, five output fuzzy sets, and triangular menrd-is usually a small fraction of the domain interval to let the
bership functions. measured input value belong to the two middle fuzzy sets at the
For the four-pole filter example, we choose five fuzzy setzame time.
for each input with the third fuzzy set centered on the measuredrhe output membership functions in this example are also
value of the input. The membership functions are in the shapeosen as symmetrical triangular functions each centered at the
depicted in Fig. 6. coupling element sampling points. As an example, Fig. 9 shows
In Fig. 6, c is the measured value ¢, at a specific fre- the output membership functions of the coupling elemgnt
guency. The domain interval— «a is selected considering thei.e., my».
difference between the measured and id&al The valued is Note that, in general, the choice of membership functions, as
usually a small fraction of the domain interval to let the meawell as their location and spreads, is a related problem and can
sured input value belong to the three middle fuzzy sets at the adaptively implemented in our algorithm. This issue has been
same time. The valuesand f are chosen around the middle ofreferred to asuning the parameters of an FLS using training
a, c andb, ¢, respectively. data and is addressed in [13]-[15].
The output membership functions are symmetrical triangularin our FLS, we use Singleton fuzzification, sum—product
functions with centers at coupling element values by which tltemposition, and product inference [11]. To calculate any of
data pairs are generated. As an example, Fig. 7 depicts the outpatoutputs, we use the centroid defuzzification formula

membership function of the coupling elementi.e.,m1>. K .

For the eight-pole filter example, we choose four fuzzy sets Z m;y;
for each input with the measured value of the input at the middle Yi :% (12)
of two centers of adjacent fuzzy sets, as shown in Fig. 8. > my

In Fig. 8, ¢ is the measured value ¢f,; at a specific fre- J=1

guency. The domain interval— a is also selected considering m; =mj(x1)m;(x2),...,m;(xg) (12)
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0

wherey! denotes the center value of the fuzzy set corresponding — Example 1
to rule 5 and outputy;. The z; values are the input values at 5| --- Extracted ||
which the output is desired. The tenm; (z;) is the member-
ship value ofz;, to the fuzzy set corresponding to the ryle -10¢
and inputzy. K is the number of rules. Note that as long as ::;g::gg !
the output membership functions are symmetrical, the shapes of - 197 m34=1.118 \
the individual membership functions are arbitrary such as trian- 2 |
gular, trapezoidal, and Gaussian functions, ghis simply the &
center of each membership function. If we chose a nonsymmet- 25}
rical membership, then we would need to calculate the centerof | \ |
gravity of each membership function g5 By choosing sym-
metrical membership functions, we need less computation. 357/

VII. TUNING RESULTS FOR THESLIGHTLY DETUNED 1 12 114 16 118 12 122 124 126 128 13

Freq (GHz)
FOUR-PoOLE CHEBYSHEYV FILTER

. . . . PO : i1oFig. 10.  Comparison between experimental and extracted performance using
The ideal coupling matrix of the filter is given in (13), while*; .o slightly detuned filter

the coupling matrix of the slightly detuned filter (example 1)
is given in (14). The performance associated with this coupling

matrix represents the experimental performance of a slightly q‘ﬁétrix given in (17), one can easily identify the coupling coef-

tuned f||t_er_. . . . ficients that caused the detuning.
By defining all membership functions for inputs and outputs, For this example, we used the same frequency sampling

extracting the rules from the generated data, and using the 8ints as the slightly detuned example. We also uSedas
fuzzification formula, one can easily extract the coupling matr puts as follows: '

of the slightly detuned filter. The FL approach required 70 rules

By comparing the ideal matrix given in (13) and the extracted

and only nine frequency sampling points, i.e., nine inputs to per- _007 0(')7 106 8
form the extraction. Mexample2 = 0 16 0 0.8 (16)
The extracted coupling matrix is given in (15), while Fig. 10 0 0 08 0
shows the extracted performance calculated using (2)—(5) and N .
(15). The extracted coupling matrix provides a response that is Ogr 0'07‘) ) g4r 0
fairly close to the experimental filter response — 0 D%
Yy p p Mextracted 0 1.645 0 0.759 (17)
ro 1.2 0 0 L O 0 0.759 0
1.2 0 095 0
Migeal = (13)
0 09 0 1.2 IX. TUNING RESULTS FOR THESLIGHTLY DETUNED
Lo 0 12 0 EIGHT-POLE ELLIPTIC FILTER

The ideal coupling matrix of the filter is given in Table I,

(14) while the coupling matrix of the slightly detuned filter
(example 1) is given in Table Il. The performance associated
with this coupling matrix represents the experimental perfor-
mance of a slightly detuned filter.

(15) By defining all membership functions for inputs and outputs,
extracting the rules from the generated data, and using the de-
fuzzification formula, we can easily extract the coupling matrix

For this example, the inputs are selected to be the magnituiféhe slightly detuned filter. For each of the six unknowns i.e.,
of S, at different frequencies with seven frequencies inside tisoupling elements in (9), we chose five sampling points within
passband and the other two outside the passband. the range of:10% of the ideal coupling elements. We assume
that the coupling elements to be extracted are within this range.

Therefore, the number of data pairs in this case’ is-5.5 625.

These data pairs are generated very fast using the center values

of the fuzzy sets associated with the coupling elements incor-

The coupling matrix of the highly detuned filter (example 2porated into (2)—(5). We need to generate these data pairs only
is given in (16). We also used only nine frequency points and ddce. We first consider nine frequency points, i.e., nine inputs.
rules for this example. Equation (17) gives the extracted colie obtain a better selectivity in the case of a slightly detuned
pling matrix, while Fig. 11 illustrates a comparison between tHiter, we choose the magnitude 6f; at frequency points in

FL extracted performance and the experimental performancefloe passband as inputs. After omitting the contradicting rules,

both S»; and Sy;. A very good match between the two filterthe number of rules reduces to 1016 rules. For the inputs we

characteristics is achieved. have chosen, 24 of these rules are fired to extract the outputs.

0

1.3 0 1.05
Mexamplel - 0 1.05 0
0 1

0

o= OO

r 0 1.28 0 0
1.28 0 1.03 0

0 1.03 0 1.118
L O 0 1.118 0

Mextracted =

VIIl. T UNING RESULTS FOR THEHIGHLY DETUNED
FoOuRr-PoLE CHEBYSHEV FILTER
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0 , TABLE I
\; Example 2 Mexample1 OF THE EIGHT-POLE ELLIPTIC-FILTER EXAMPLE
st ~ Exracted (SLIGHTLY DETUNED)
10+ -
0 .8000 0 0 0 0 0 0
-15¢ ' ' 070 8000 0  .6000 O 0 0 -.0263 0
= m12=0.75 = m12=0.
g -20f m23=1 645 m23=1.60 0 .6000 0 .6000 0 .0720 O 0
5 o5l m34=0.759 m34=0.80 0 0 6000 0 .5000 O 0 0
@ 0 0 0 5000 0 .6000 0 0
=07 0 0 0720 0 6000 0 .6000 0
-35¢ 0 -.0263 0 0 0 .6000 0 .8000
40 L 0 0 0 0 0 0 8000 O |
11 112 114 116 118 12 122 124 126 128 13 TABLE 1II
Freq (GHz) Mextractea OF THE EIGHT-POLE FILTER EXAMPLE
@ (SLIGHTLY DETUNED, NINE INPUTS)
a
0 ; —— - _
\}‘ 7 ™\ / Exampledz 0 .8004 0 0 0 0 0 0
N f ---- Extract
5t ] j e 8004 0 5762 0 0 0 -0263 0
10l i ,‘ ] 0 5762 0 559 0 0765 O 0
§ 0 0 5559 0 .4945 0 0 0
N -15¢ / i 079/ E 1 0 0 0 .4945 0 .5559 0 0
m m12=0. u
2 200 m2%075 m23=160 | | 0 0 0765 0 5559 0 5762 0
% mz3=1.645 m34=080 | | 0 -.0263 0 0 0 5762 0  .8004
Gl i § 1 L0 0 0 0 0 0 8004 O
-30} | -
2 (inputs) can benefit us in the following two ways.
» The possibility of rule contradiction will decrease and,
A 3 114 116 118 12 122 124 126 128 13 thus, we get more rules out of the bgsm rules extracted
Freq (GHz) from the data pairs. More rules could give us a more accu-
®) rate system. Note that by increasing the number of inputs,
the number of rules cannot exceed the number of sampling
Fig. 11. Cpmparison betvyeen experimental and extracted performance using points.
FL for the highly detuned filter. (@21 (b) 5. « For a rule to be fired, we need all the conditions of (8) at
TABLE | the antecedent to be satisfied. Therefore, more inputs lead
Midea OF THE EIGHT-POLE ELLIPTIC-FILTER EXAMPLE to more conditions to be satisfied. This, in turn, reduces
the probability for a rule to be fired. In other words, the
T 0 8231 0 0 0 0 0 0 rules will be more selective.
831 0 5917 0 0 0 -0251 0 For this case, after omitting the contradicting rules, we get
0 5917 0 5516 O 0781 0 0 2235 ruleg, Whlch is about two tlme§ more thap the number of
0 0 5516 0 4925 O 0 0 rules for nine inputs. For the same input, in this case, 49 rules
‘ ‘ are fired to calculate the outputs. The extracted coupling matrix
0 0 0 4925 0 5516 0 0 for 17 inputs is given in Table 1V, while Fig. 13 shows the ex-
0 0 0781 0 5516 0 5917 O tracted performance calculated using the coupling matrix given
0 -0251 O 0 0 5917 0  .8231 in Table IV and (2)—(5). The extracted coupling matrix provides
0 0 0 0 0 0 8231 0 | very close responses to the experimental responsgs, aind

S11, as shown in Fig. 13(a) and (b), respectively. A comparison

The extracted coupling matrix is given in Table III, Whilebetween Figs. 12 and 13 demonstrates the effect of increasing

Fig. 12 shows the extracted performance calculated using {HS number of mput.s, as it shows a better match for i
coupling matrix given in Table Il and (2)—(5). The extracted"d 511 characteristics.

coupling matrix provides a close response to the experimental
filter response of551, as shown in Fig. 12(a), but not as much

close response to the experimental responsgg gfas shown in
Fig. 12(b). The coupling matrix of the highly detuned filter (example 2)

To perform a better response, we increase the number of fiegiven in Table V. We used 17 frequency points as well. The
guency points to 17. Increasing the number of frequency poimtsmber of rules after resolving the contradictions becomes

X. TUNING RESULTS FOR THEHIGHLY DETUNED
EIGHT-POLE ELLIPTIC FILTER
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0 T ™ 7
// Vo Example 1
10+ ,,' { ---- Extracted (9 inputs)
o0l m12=08 i
m23=0.6 / ) m12=0.8004
30 |...m34=0. o ) m23=0.5762
m45=0.5 i h m34=0.5559
40 |- -m36=0.072... i p m45=0.4945
) m27=-0.0263 |! ! m36=0.0765
2 50 j i m27=-0.02626
60 f ;
70 + v ?g‘
-80 |
90 +
11.9 11.92 11.94 11.96 11.98
Freq(GHz)
(@
0 , - ‘ :
\ — Example 1
0 \ ---- Extracted (9 inputs)
AVAVA |
m12=0.8 AV A
m23=0.6 ATVARTIYE m12=0.8004
@ -307 m34=0. BRI m23=05762]
z m45=0.5 p oW -0
= m36=0.072 i i m34=0.5559
D 401 112720 0963 ! = mAS=0.4945
: i m36=0.0765
| m27=-0.02626
50+ i i
-60 4

1192 1194 1196 1198 12

Freq(GHz)
(b)

1202 1204 12.06 12.08
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0 :
— Example 1
-10 ---- Extracted (17 inputs)
-20 -m12=0:8 1
m23=0.6
-30 F'm34=06 m12=0.8026
m45=0. m23=0.6013|
& -40 I 13620.072 m34=0.5781]
T gg | M27=-0.0263 m45=0.4886)
S m36=0.0744
@ o m27=-0.0254
70 +
-80 L
90+
11.9 11.92 11.94 11.96 11.98
Freq(GHz)
(@
0
] —— Example 1
---- Extracted(17 inputs)
10t : ! -
m12=0.8 P\ |
m23=0.6 | A\ f
200 m34=06 (\\/\/\
m45=0.5 B I
~ 3gl . mM36=0072 1§ i/ I
g 30 m27=00263 || 1/ | \
= ! Y m12=0.8026
0 40+ m23=0.6013
m34=0.5781
m45=0.4886
-50F M36=0.0744
m27=-0.0254
60}
1192 1194 1196 1198 12 1202 1204 1206 12.08
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Igikf. 13. Comparison between experimental and extracted performance of the

Fig. 12. Comparison between experimental and extracted performance of
eight-pole filter using FL with 17 inputs for the slightly detuned filter. &) .

eight-pole filter using FL with nine inputs for the slightly detuned filter.$a) .

®) S OEN
TABLE IV
Mextractea OF THE EIGHT-POLE ELLIPTIC-FILTER EXAMPLE TABLE V
(SLIGHTLY DETUNED, 17 INPUTS) Mexampler OF THE EIGHT-POLE ELLIPTIC-FILTER EXAMPLE
' (HIGHLY DETUNED)
8(())26 '8(())26 6(())13 g g g 0254 g 0 3000 0 0 0 0 0 0]
' ' - .5000 0 .7000 0 0 0 .1000 0
0 .6013 0 5781 0 .0744 0 0 0 7000 0 10000 0 1000 0 0
0 0 5781 0 488 0 0 0 ' : -
0 0 0 488 0 5781 0 0 0 0 1.0000 0 .1000 0 0 0
0 0 0744 0 5781 0 6013 0 o 0 0 .1000 0 10000 0 0
0 0254 0 0 0 6013 0 8026 0 0 -.1000 0 1.0000 0 .7000 0
0 0 0 0 0 0 8026 0 0 .1000 0 0 0 7000 0 .5000
i | 0 0 0 0 0 0 .5000 0

3066. For the inputs we have chosen, ten of these rules are fired
to extract the outputs. Table VI gives the extracted couplingis is that, in the case of the highly detuned filter, we need

matrix, while Fig. 14 illustrates a comparison between the Riigger domain intervals for inputs and outputs, while keeping
extracted performance and the experimental performance fioe number of membership functions the same. This will
So1. A very good match between the two filter characteristiagsult to having less data pairs that resemble the experimental
is achieved. Comparing the number of firing rules in the cagerformance of the filter or less firing rules.

of the highly detuned filter with the case of the slightly detuned By comparing the ideal matrix given in Table | and the ex-
filter, we can observe that, although we have more rules in thracted matrix given in Table VI, one can easily identify the cou-
example, the number of firing rules are less. The reason faling coefficients that caused the detuning.
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TABLE VI [5] A.E. Atia and H.-W. Yao, “Tuning and measurements of couplings and
Mextractea OF THE EIGHT-POLE ELLIPTIC-FILTER EXAMPLE resonant frequencies for cascaded resonator$EEE MTT-S Int. Mi-
(HiGHLY DETUNED) crowave Symp. Digvol. 3, 2000, pp. 1637-1640.

[6] P. Harscher and R. Vahldieck, “Automated computer controlled tuning
_ of waveguide filters using adaptive network model&EE Trans. Mi-

0 4722 0 0 0 0 0 0 crowave Theory Techvol. 49, pp. 2125-2130, Nov. 2001.
[7] Takagi and Sugeno, “Fuzzy identification of systems and its applica-
4722 0 6324 0 0 0 0972 0 tions to modeling and controlfEEE Trans. Syst., Man, Cybermol.
0 6324 0 9280 0 -.1222 O 0 SMC-15, Jan.-Feb. 1985.
[8] L. Wang and J. M. Mendel, “Generating fuzzy rules by learning from
0 0 9280 0 1222 0 0 0 examples,”IEEE Trans. Syst., Man, Cybermol. 22, pp. 1414-1427,
Nov.—Dec. 1992.
0 0 0 1222 0 9280 0 0 [9] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualita-
0 0 -.1222 0 9280 O 6324 0 tive modeling,”IEEE Trans. Fuzzy Systol. 1, p. 7, Feb. 1993.
[10] C. T. Leondes,Fuzzy Theory Systems: Techniques and Applica-
0 0972 0 0 0 6324 0 4722 tions San Diego, CA: Academic, 1999.
0 0 0 0 0 0 4722 0 [11] J. M. Mendel, “Fuzzy logic systems for engineerinBroc. IEEE (Spe-
- - cial Issue) vol. 83, Mar. 1995.
[12] A. Atia and A. E. Williams, “New type of waveguide bandpass filters
i ) i for satellite transpondersCOMSAT Tech. Rewol. 1, no. 1, pp. 21-43,
— Example 2 1971.
---- Extracted || [13] L.Wang and J. M. Mendel, “Back-propagation of fuzzy systems as non-
linear dynamic system identifiers,” iroc. IEEE Int. Fuzzy Syst. Conf.
PRI San Diego, CA, 1992, pp. 1409-1418.
"'5_6'%’2' [14] J.-S. R. Jang, “Self-learning fuzzy controllers based on temporal back-
:34;0.928 propagation,IEEE Trans. Neural Networksol. 3, pp. 714-723, Sept.
m45=0.122 | 1992.

[15] S. Horikawa, T. Furahashi, and Y. Uchikawa, “On fuzzy modeling using
fuzzy neural networks with the back-propagation algorithifsEE
Trans. Neural Networkssol. 3, pp. 801-806, Sept. 1992.
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Fig. 14. Comparison between experimental and extracted performance of
eight-pole filter using FL with 17 inputs for the highly detuned filter.

technique, Grenoble, France. From 1983 to 1986, he
was a Research and Teaching Assistant with the De-
partment of Electrical Engineering, University of Waterloo. In 1986, he joined

eaS”y applled to any microwave circuit tuning prOblem' COM DEV Ltd. Cambridge, ON, Canada, where he held several technical and
management positions with the Corporate Research and Development Depart-
REFERENCES ment. In 1998, he became a Scientist. In January 2000, he joined the University

of Waterloo, as a Professor in the Electrical and Computer Engineering Depart-
[1] L. A. Zadeh, “Fuzzy sets,Inform. Contr, vol. 8, pp. 338-353, 1965. ment. He currently holds a Research Chair at the University of Waterloo in RF
[2] J. Dunsmore, “Simplify filter tuning using time domain transformers,technologies. He has authored or coauthored numerous publications in the area

Microwaves REMar. 1999. of electromagnetic modeling and high-temperature superconductivity. He holds
[8] ——, “Tuning band pass filters in the time domain,"|BEE MTT-S Int.  several patents related to microwave filter design for satellite applications. His

Microwave Symp. Dig1999, pp. 1351-1354. current research interests include superconductive technology, microelectrome-
[4] —, “Advanced filter tuning in the time domain,” iRroc. 9th Eur. chanical system (MEMS) technology, and CAD of RF circuits for wireless and

Microwave Conf.vol. 2, pp. 72-75. satellite applications.



	MTT024
	Return to Contents


